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LOW MEDIAN AND LEAST ABSOLUTE RESIDUAL ANALYSIS

OF TWO-WAY TABLES

Andrew F. Siegel

Princeton University

.a ABSTRACT

Some properties of and extensions to Tukey's method of median

polish, an exploratory robust additive decomposition of a two-way

table, are presented using the low median. If the table entries are

rational numbers, then this modified iteration process must stop

after a finite number of steps. However, even for tables of bounded

dimension the number of iterations can be arbitrarily large. For

the special case of 3 by 3 tables, the sum of absolute residuals

is often (but not always) minimized by median polish, especially for

tables with strong row or column effects. Methods designed to

supplement the polishing process by increasing the number of zero

residuals and to obtain a least absolute residual solution are

developed.

SOME KEY WORDS: Median polish, robustness, resistance, exploratory

data analysis, Li estimation.
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|*_= 1. INTRODUCTION AND SUMMARY :Dpt

Exploratory data analytic methods are designed to be practical

tools for the identification of useful structures and features of

complicated assemblages of recorded information. Although most of

* these methods seem empirically to work quite well in practice with

actual data, often their exact theoretical properties have not yet

been worked out in detail.

We will focus on the method of median polish, a robust and

resistant exploratory method for computing an additive decomposition

of a two-way table proposed by Tukey (1970, 1977). This method has

also been considered by McNeil (1977), Mosteller & Tukey (1977), and

Velleman & Hoaglin (1981). We will provide results concerning the

convergence properties of this iterative procedure, and will shed

some light on the relationship between median polish and least

absolute residual solutions, which have been considered for two-way

tables by Armstrong & Frome (1976, 1979).

The low median of a sample is defined to be the median if the

sample size is an odd number, and the lower of the middle two values

if the sample size is even. The low median minimizes the sum of

absolute residuals just as the median itself does, and has the
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potential advantage of assuring the presence of at least one zero

residual. We will work exclusively with low medians here; this

simplifies some results by rendering the case of even sample size

Vnearly as tractable as the odd case. The use of high medians in

place of low medians would, of course, provide equivalent

properties.

An additive decomposition of a two-way table, say of the r by

c matrix Z, is a vector x of row effects, a vector y of column

effects, and a matrix R of residuals such that

Z(i,j) = x(i) + y(j) + R(i,j), all i,j. (1.1)

Whenever (1.1) holds for some vectors x and y, we will say that

the tables Z and R are additively equivalent. A decomposition

can be chosen by specifying the row and column effects, which then

determine the residuals. A good fit results in small residuals and

a perfectly additive table, x(i) + y(j), that is close to the

original data table.

Median polish can begin with either rows or columns. Working

alternately with rows and columns, medians are subtracted from the

current table entries and added to the corresponding effects. One

such step (either rows or columns) is called a "half iteration" or a

"half-step." This process is repeated until the median of each row

and each column is zero. The low median polish considered here is

this same procedure, but with the low median used in place of the

median.
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The method of median polish was introduced by Tukey (1970,

Chapter 16, page 35) as a procedure to be iterated until all rows

,: A and columns have median zero, although it is believed that

termination after several steps will usually suffice. In Section 2

we will prove that the iteration process must stop if the table

entries are rational numbers, but can take arbitrarily long even for

integer tables of a given fixed size. The 3 by 3 case is

considered in Section 3, and it is proven that the median polish

solution often (although not always) minimizes the sum of absolute

residuals (the Ll norm). Fortunately, this minimization tends to

happen for a class of tables that are especially likely to arise in

practice, namely those with strong row or column effects.

Section 4 considers two procedures that can supplement a median

polish: finding a nearby solution that maximizes the number of zero

residuals, and obtaining a nearby least absolute residual solution

if this is not already achieved. Although a least absolute residual

procedure can be done independently of median polish, for example by

linear programming or other methods (Bloomfield & Steiger, 1980),

there may be some advantage to staying near to the median polish

solution. Because of nonuniqueness of least absolute residual

solutions, an answer near to the original data of the table may well

be preferable.

It
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2. CONVERGENCE OF LOW MEDIAN POLISH.

Empirically, the process of median polish seems to iterate for

several steps, with smaller medians being subtracted at each stage,

then finally stop because the median of each row and column becomes

zero. Thus it appears in practice that the iteration process

actually stops after a finite number of steps. We will see that

although it can be proven that this is the case for tables with

rational entries, the process can take a very long time.

THEOREM 2.1: The low median analysis of a two way table with

rational entries will stop iterating after a finite number of

iterations. Convergence will be achieved and cycling is impossible.

PROOF: Without loss of generality, we may assume that the entries

of the table are integers because we can multiply each entry by the

least common multiple of the denominators of all table entries.

This common scale factor will not affect the basic process of median

polish and will change neither the number of, nor the nature of, the

iterations. For a table of integers the low median must itself be

an integer, so it follows that the sum of absolute residuals can

change only in integral steps and can therefore decrease for only a

finite number of iterations. The lemma that follows will complete

the proof by showing that the only way the table can change while

the sum of absolute residuals stays constant is if the number of

strictly negative residuals decreases. This number is therefore an

upper bound on the number of further iterations before the process
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stops. The lemma is stated for a half-iteration on rows but it

applies, without loss of generality, with the words "rows" and

"columns" interchanged.

LEMMA 2.1. If after a half-iteration of low median polish on rows,

the sum of absolute residuals in a table of residuals remains

unchanged while some of the residuals do change, then

(a) there must be an even number of columns

and (b) the number of strictly negative residuals must decrease.

PROOF. Clearly the sum of absolute residuals in each row must

remain unchanged because these cannot increase when a low median is

subtracted. Because subtracting a nonzero median from an odd number

of values in a given row must reduce the sum of absolute residuals,

if the number of columns were odd there could be no change in the

table, establishing result (a). Because subtraction of a positive

low median from a group of numbers must decrease the sum of absolute

values, all low medians must be nonpositive. Because the table does

change, the low medians cannot all be zero. Therefore the low

median of at least one row is negative. Subtracting such a negative

value cannot change a zero or positive entry into a negative one,

but it will change the low median entry itself into a new zero

residual. This will eliminate at least one negative residual from

the table.



-6-

There is no simple upper bound on the number of iterations

required for all tables of a given dimension. In fact there is no

upper bound at all as is shown by the following counterexample.

This will also suggest that median polish lacks a certain kind of

robustness, because a small change in only one entry of a table can

have far reaching consequences. Bear in mind that this is an

extreme pathological case and is not typical behavior of an

otherwise generally robust and resistant procedure.

Begin with the following fairly additive five by five table.

Because the dimensions of row and column are both odd, low median

polish is equivalent to median polish (as well as to high median

polish) in this example.

4 3 2 2 1

5 4 3 3 2

6 5 4 3 2 (2.1)

6 5 5 4 3

76 6 5 4

After two half-steps of median polish starting with rows, we

converge to a table with zero row and column medians:

0 0 0 1 1

0 0 0 1 1

0 0 0 0 0 (2.2)

-1 -1 0 0 0

-1 -1 0 0 0
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If, however, we replace the value 4 in the upper left corner of

(2.1), with the small perturbation 4+e instead, then after two

half-steps we obtain a slightly different result:

e 0 0 1 1

0 0 0 1 1

0 0 0 0 0 (2.3)

-1 -1 0 0 0

-1 -1 0 0 0

Although this does not appear very different from the unperturbed

result (2.2), note that the median of the first row is now e and

is not zero. In fact, we have entered a long spiral cycling process

which will require approximately 4/e half-steps before

converging. Note that the smaller the perturbation, the longer the

iteration process. If e is the reciprocal of an integer, then the

final table of residuals will be

e 0 -1 0 0

0 0 -1 0 0

1 1 0 0 0 (2.4)

0 0 0 0 0

0 0 0 0 0

Although this table of residuals looks very different than the

unperturbed result (2.2), if we replace e by zero, then they are

additively equivalent. Moreover, the sum of absolute residuals has

been nontrivially reduced from 8 to 4.
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During the iteration process from (2.3) to (2.4) the

reduction in the sum of absolute residuals was the same at each

step. This suggests that in such pathological cases stopping early

can result in a substantial and unnecessarily large sum of absolute

residuals. For example, if e=.0001, then 40000 half-steps are

required for congergence. If only 10 of these are performed, then

the reduction in sum of absolute residuals is only from 8.0001 to

7.9991 instead of reaching the lower limit of 4.0001.

It is an open question whether there exists a table (necessarily

containing some irrational entries) which never stops iterating

because the sum of absolute residuals decreases indefinitely towards

a limit. The answer, however, is not crucial because we know that

even integer tables can take arbitrarily long to converge.



-9-

3. MEDIAN POLISH IS OFTEN OPTIMAL FOR 3 BY 3 TABLES.

Although median polish need not always yield an Ll solution

(one that minimizes the sum~ of absolute residuals) , for the special

case of 3 by 3 tables it often will. Fortunately, this happens

in precisely those tables likely to arise in practice, namely those

with strong row or column effects.

THEOREM 3.1: If the first half-step of median polish in a three by

three table results in a row or a column of zeroes, then median

polish will converge in at most three steps to an Ll solution.

Details of the proof will be omitted. It proceeds by exhaustion

of all possible cases, of which there are only finitely many, and

relies on the following lemma to recognize when an Ll solution has

been reached.

LEMMA 3.1: Every three by three table can be put into one of the

following two forms by permuting rows and columns, and by

subtracting row and column effects. Signs ( + and -

denote numbers either of that sign or zero. Any table in one of

these two forms minimizes the sum of absolute residuals over all

additively equivalent tables.

0 +- 0 00

- 0 + 0 + - (3.1)

+ -0 0 -3
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PROOF: The Li property can be established from the fact that if

there were an additively equivalent table with smaller Li norm,

then by convexity every table that is a convex linear combination of

the two must also reduce the Ll norm. A contradiction can be

reached by moving only slightly from the original table in this

family of tables so that no nonzero element changes its sign. It

can then be verified by cancellation of terms that the Li norm

cannot decrease.

For example, this one-parameter of tables additively equivalent

to a table of the first type in (3.1) can be represented as

[ 0 Z(1,2) -Z (1,3)] [x(l)4y(l) x(l)4-y(2) x(i)+y(3)1

-Z(2,1) 0 Z(2,3) + t x(2)+y(l) x(2)+y(2) x(2)+y(3)1 (3.2)

Z(3,1) -Z(3,2) 0 ix 3)+y(1) x(3)+y(2) x(3)+y(3)]

where the Z(i,j) are all nonnegative. By choosing a positive value

for t small enough so that tlx(i)+y(j)j < Z(i,j) whenever

Z(i,j) is nonzero, we find for representative terms that

I Z(1,2) + tx(l) + ty(l)l > I Z(1,2)I + tx(l) + ty(l)

and (3.3)

I-Z(1,3) + tx(l) + ty(3)1 I-Z(I,3)1 - tx(l) - ty(3)
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Doing this with the other off-diagonal terms, summing all the terms,

and cancelling, we find that the Li norm of (3.2) is greater

than or equal to the Ll norm of the original table (on the left

in (3.2)). The proof for the second form in (3.1) proceeds

similarly.
SI

A ,Here is an illustration of the known result that median polish

need not result in an Ll solution:

1 6 3

5 9 2 (3.4)

6 4 7

Starting with columns yields an Ll norm of 14; beginning with

rows yields a smaller L1 norm of 12. However, the Li norm can

be reduced to 11 using row effects (0, 3, 4) and column effects

(2, 6, 3), a solution unattainable by median polish alone. The

residuals for these three solutions, respectively, are

-4 0 0 -2 0 0 -1 0 0

0 -3 -1 0 1 -3 0 0 -4 (3.5)

0 -3 -3 0 -5 1 0 -6 0

i.

i -.
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4. FORCING ZERO RESIDUALS AND OBTAINING AN Li FIT.

Upon completion of low median polish of an r by c table,

each row and each column will contain at least one zero residual,

and there will therefore be at least max(r,c) zeroes in the table

of residuals. This generally falls short of the number of zeroes

attainable by some linear fit that attains median polished form. we

A will show that there exists a set of effects such that the residual

table is in low median polished form (i.e. the low median of each

row and column is zero) and there are at least r + c - 1 zero

residuals. As a result, we will be left with no more non-zero

residuals than there are residual degrees of freedom. This may be

an advantage in the further examination of the residuals. Following

this, a least absolute deviation fit can be obtained in a

straightforward way.

THEOREM 4.1: For every r by c table, there exists a set of

effects such that the residual table has at least r + c - 1 zero

values and has zero low medians for each row and each column.

PROOF: Begin with the low median polish procedure. If there are

fewer than r + c - 1 zeroes, then by a dimensionality argument

there exisis an additive perturbation of the residual table that

increases the number of zeroes by one without changing the low

medians of the rows and columns. This perturbation table can be

6dj
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constructed, for example, using a graph with r + c vertices, one

for each row and one for each column. Two vertices will be

connected by an edge if and only if one is a row vertex, the other

is a column vertex, and there is a zero in the table at that row and

column. This graph cannot be connected because a connected graph

on n vertices must have at least n-l edges. Divide the vertices

into two nonempty disconnected sets. Define effects to be zero for

the rows and columns in the first set, t for the rows in the second

1 .set, and -t for the columns in the second set. Regardless of the

value of t, when this perturbation table is added to the polished

. table the zeroes will be preserved and only the nonzero entries will

be changed; for small t no signs will be changed and therefore the

low median conditions will be unaffected. Choose t so that one

nonzero entry becomes zero while no others change sign. If

possible, the sign of t should be chosen so that the sum of

absolute residuals decreases, although this is not a necessary step

of the proof. By repeating this process on the resulting table,

increasing the number of zero residuals by one each time, the result

follows.

As an example of this connected graph argument, consider a

polished table together with the graph connecting row vertices to

column vertices where there are zeroes:

0 3 -1 0

-2 0 2 1 (4.1)

5 0 0 -1
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Placing zeroes as effects for one connected component of the graph

(row 1, column 1, and column 4) and choosing t=l for the second

component we obtain the additive table

A,- 0 -1 -1 0

0 I0 -1 - 0

1 1 0 0 1 (4.2)

1 1l 0 01

When this is added to our original table, left side of (4.1), a newb

sixth zero residual is introduced:

0 2 -2 0

-1 0 2 2 (4.3)

6 0 0 0

The low median polish has been preserved from (4.1) to (4.3)

because no signs have been allowed to change.

After following these steps, an Ll fit can be obtained using a

method related to that of Bloomfield and Steiger (1980). We will

assume that our table is nondegenerate, i.e. it has no solution with

more than r + c - 1 zero residual values. By adding small

independent continuous random variables to the entries of a

degenerate table, with probability one we can obtain a nondegenerate

table that is close to the given table.
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An Li solution might be obtained as follows. For each of the

r + c - 1 locations of zeroes in the table of residuals, find the

one-dimensional space of additive perturbation tables (each of whose

entries, by the connected graph construction above, may be assumed

to be either 0, t, or -t) having zeroes at the other

r + c - 2 locations. It may be that small values of t (either

positive or negative) can decrease the sum of absolute residuals

when the original table is added to the perturbation table. If this

sum can be reduced, then increase the magnitude of t, while

preserving its sign, until the minimum sum is attained; this might

be computed by using each nonzero absolute value of the original

table as a candidate for the magnitude of t. After this, the row

and column low medians are no longer necessarily zero, and it may be

necessary to repeat the processes of low median polish and the

forcing of zeroes. On the other hand, if the sum of absolute

residuals cannot be reduced in this way for any of the zeroes, then

the following lemma shows that the current fit has minimized the sum

of absolute residuals over all possible additive fits.

LEMMA 4.1. Let Z denote a nondegenerate r by c table with

r + c - 1 zeroes. If the Ll norm of Z cannot be decreased by

considering only those additively equivalent residual tables with

zeroes at r + c - 2 (i.e. all but one) of the same places, then

the Li norm of Z is a minimum over ALL additively equivalent

tables.

No
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PROOF. Let II II denote the Li norm. We will proceed

indirectly by assuming that there does exist an additive

perturbation table T satisfying II Z + T II < II Z II

and showing that this assumption leads to a

.1 contradiction. Begin by constructing tables U(), . . . , U ( r+c-l)

where each table entry is 0, 1, or -1; each U (k) has a zero at

th(kevery zero of Z except the k one; yet no U(k) is identically

zero. Such U(k) can be constructed, for example, using the

connected graph argument of the proof of Theorem 4.1.

The set of tables {U(U),..., U (r+cl) }  is linearly

independent because at the location corresponding to the kth zero

of Z, only U(k) is nonzero. Because the dimensionality is

correct, [U (l,...,u (r+cl) is a basis for the vector space of

all additive r by c tables. Therefore there exist coefficients

ak such that

r+c-1 ak (k) (4.4)

k-1

We will also need an e in (0,1) satisfying

r+c-i ,(k) < whenever Z i (4 5
k la k Uj I Z I wZ 0

Because the number of constraints is finite, such an e does exist.

The following computations, from (4.6) to (4.9) will show

that the change in norm from Z to Z + eT is equal to the sum

over k of the change in norm from Z to Z + eakUk). Begin by

breaking the sum of absolute residuals into two parts:
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z + eT I ZI (4.6)
(k)- I IEZ k) + Z HZ.. + e k k j ij

Z 0 k k ij 0 k k1]i

The first summation in (4.6) can be simplified because for a

given (i,j) pair there is exactly one value of k with nonzero
,4- , 1 k

; moreover this U - 1. The second summation in (4.6)

can be simplified using the fact that lal > IbI implies

la + bi - lal - [sign(a)] b; this is why a small e was needed.

- , Thus (4.6) becomes

e E la + e E sign(Z j) U (4.7)k Z ij * k

Exchanging the order of summation in the second term, then applying

the above arguments in reverse, (4.7) becomes
_.(k)

e akUij [ + E (IZ +ea ui 1Z 1)) (4.8)
k Z i=0 Z 00 ij k 1) 1)

which we recognize to be (k)
S IlZ + eakU(k - zfl ) (4.9)
k

which must be nonnegative because for each k the table

ea kU(k) has r + c - 2 zeroes that coincide with zeroes of Z and

hence, by a hypothesis of the lemma, each term in the sum of (4.6)

* is nonnegative.

The net result of (4.6) through (4.9) is therefore

jZ + eT Z . II z! (4.10)

But Z + tT H is the sum of convex functions IZ ij - tT ij

of t, and is therefore a convex function of t. Thus

Z 2 + eT I1 < 1 z 1 I (4.11)

follows from the assumption that JI Z + T 11 < fl Z 1I and the fact

that e is between 0 and 1. The contradiction of (4.10) and

(4.11) completes the proof. H
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